53,99 € *

ggf. zzgl. Versand

ggf. zzgl. Versand

This book on functional analysis covers all the basics of the subject (normed, Banach and Hilbert spaces, Lebesgue integration and spaces, linear operators and functionals, compact and self-adjoint operators, small parameters, fixed point theory) with a strong focus on examples, exercises and practical problems, thus making it ideal as course material but also as a reference for self-study.

Anbieter: buecher.de

Stand: 26.06.2019 Zum Angebot

Stand: 26.06.2019 Zum Angebot

40,99 € *

ggf. zzgl. Versand

ggf. zzgl. Versand

Massive compilation offers detailed, in-depth discussions of vector spaces, Hahn-Banach theorem, fixed-point theorems, duality theory, Krein-Milman theorem, theory of compact operators, much more. Many examples and exercises. 32-page bibliography. 1965 edition.

Anbieter: buecher.de

Stand: 26.06.2019 Zum Angebot

Stand: 26.06.2019 Zum Angebot

51,99 € *

ggf. zzgl. Versand

ggf. zzgl. Versand

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Anbieter: buecher.de

Stand: 26.06.2019 Zum Angebot

Stand: 26.06.2019 Zum Angebot

13,99 € *

ggf. zzgl. Versand

ggf. zzgl. Versand

2012 Reprint of Volumes One and Two, 1957-1961. Exact facsimile of the original edition, not reproduced with Optical Recognition Software. A. N. Kolmogorov was a Soviet mathematician, preeminent in the 20th century, who advanced various scientific fields, among them probability theory, topology, logic, turbulence, classical mechanics and computational complexity. Later in life Kolmogorov changed his research interests to the area of turbulence, where his publications beginning in 1941 had a significant influence on the field. In classical mechanics, he is best known for the Kolmogorov-Arnold-Moser theorem. In 1957 he solved a particular interpretation of Hilbert´s thirteenth problem (a joint work with his student V. I. Arnold). He was a founder of algorithmic complexity theory, often referred to as Kolmogorov complexity theory, which he began to develop around this time. Based on the authors´ courses and lectures, this two-part advanced-level text is now available in a single volume. Topics include metric and normed spaces, continuous curves in metric spaces, measure theory, Lebesque intervals, Hilbert space, and more. Each section contains exercises. Lists of symbols, definitions, and theorems.

Anbieter: buecher.de

Stand: 26.06.2019 Zum Angebot

Stand: 26.06.2019 Zum Angebot

87,99 € *

ggf. zzgl. Versand

ggf. zzgl. Versand

Dedicated to Tosio Kato´s 100th birthday, this book contains research and survey papers on a broad spectrum of methods, theories, and problems in mathematics and mathematical physics. Survey papers and in-depth technical papers emphasize linear and nonlinear analysis, operator theory, partial differential equations, and functional analysis including nonlinear evolution equations, the Korteweg-de Vries equation, the Navier-Stokes equation, and perturbation theory of linear operators. The Kato inequality, the Kato type matrix limit theorem, the Howland-Kato commutator problem, the Kato-class of potentials, and the Trotter-Kato product formulae are discussed and analyzed. Graduate students, research mathematicians, and applied scientists will find that this book provides comprehensive insight into the significance of Tosio Kato´s impact to research in analysis and operator theory.

Anbieter: buecher.de

Stand: 26.06.2019 Zum Angebot

Stand: 26.06.2019 Zum Angebot

79,99 € *

ggf. zzgl. Versand

ggf. zzgl. Versand

This volume, like its predecessors, is based on the special session on pseudo-differential operators, one of the many special sessions at the 11th ISAAC Congress, held at Linnaeus University in Sweden on August 14-18, 2017. It includes research papers presented at the session and invited papers by experts in fields that involve pseudo-differential operators. The first four chapters focus on the functional analysis of pseudo-differential operators on a spectrum of settings from Z to R n to compact groups. Chapters 5 and 6 discuss operators on Lie groups and manifolds with edge, while the following two chapters cover topics related to probabilities. The final chapters then address topics in differential equations.

Anbieter: buecher.de

Stand: 26.06.2019 Zum Angebot

Stand: 26.06.2019 Zum Angebot

64,95 € *

ggf. zzgl. Versand

ggf. zzgl. Versand

The philosophy of the book, which makes it quite distinct from many existing texts on the subject, is based on treating the concepts of measure and integration starting with the most general abstract setting and then introducing and studying the Lebesgue measure and integration on the real line as an important particular case. The book consists of nine chapters and appendix, with the material flowing from the basic set classes, through measures, outer measures and the general procedure of measure extension, through measurable functions and various types of convergence of sequences of such based on the idea of measure, to the fundamentals of the abstract Lebesgue integration, the basic limit theorems, and the comparison of the Lebesgue and Riemann integrals. Also, studied are Lp spaces, the basics of normed vector spaces, and signed measures. The novel approach based on the Lebesgue measure and integration theory is applied to develop a better understanding of differentiation and extend the classical total change formula linking differentiation with integration to a substantially wider class of functions. Being designed as a text to be used in a classroom, the book constantly calls for the student´s actively mastering the knowledge of the subject matter. There are problems at the end of each chapter, starting with Chapter 2 and totaling at 125. Many important statements are given as problems and frequently referred to in the main body. There are also 358 Exercises throughout the text, including Chapter 1 and the Appendix, which require of the student to prove or verify a statement or an example, fill in certain details in a proof, or provide an intermediate step or a counterexample. They are also an inherent part of the material. More difficult problems are marked with an asterisk, many problems and exercises are supplied with ``existential´´ hints. The book is generous on Examples and contains numerous Remarks accompanying definitions, examples, and statements to discuss certain subtleties, raise questions on whether the converse assertions are true, whenever appropriate, or whether the conditions are essential. With plenty of examples, problems, and exercises, this well-designed text is ideal for a one-semester Master´s level graduate course on real analysis with emphasis on the measure and integration theory for students majoring in mathematics, physics, computer science, and engineering. A concise but profound and detailed presentation of the basics of real analysis with emphasis on the measure and integration theory. Designed for a one-semester graduate course, with plethora of examples, problems, and exercises. Is of interest to students and instructors in mathematics, physics, computer science, and engineering. Prepares the students for more advanced courses in functional analysis and operator theory. ContentsPreliminariesBasic Set ClassesMeasuresExtension of MeasuresMeasurable FunctionsAbstract Lebesgue IntegralLp SpacesDifferentiation and IntegrationSigned MeasuresThe Axiom of Choice and Equivalents

Anbieter: buecher.de

Stand: 26.06.2019 Zum Angebot

Stand: 26.06.2019 Zum Angebot

33,99 € *

ggf. zzgl. Versand

ggf. zzgl. Versand

In this textbook, a concise approach to complex analysis of one and several variables is presented. After an introduction of Cauchy´s integral theorem general versions of Runge´s approximation theorem and Mittag-Leffler´s theorem are discussed. The fi rst part ends with an analytic characterization of simply connected domains. The second part is concerned with functional analytic methods: Fréchet and Hilbert spaces of holomorphic functions, the Bergman kernel, and unbounded operators on Hilbert spaces to tackle the theory of several variables, in particular the inhomogeneous Cauchy-Riemann equations and the d-bar Neumann operator. ContentsComplex numbers and functionsCauchy´s Theorem and Cauchy´s formulaAnalytic continuationConstruction and approximation of holomorphic functionsHarmonic functionsSeveral complex variablesBergman spacesThe canonical solution operator to Nuclear Fréchet spaces of holomorphic functionsThe -complexThe twisted -complex and Schrödinger operators

Anbieter: buecher.de

Stand: 26.06.2019 Zum Angebot

Stand: 26.06.2019 Zum Angebot

58,99 € *

ggf. zzgl. Versand

ggf. zzgl. Versand

This textbook gives an introduction to distribution theory with emphasis on applications using functional analysis. In more advanced parts of the book, pseudodi?erential methods are introduced. Distributiontheoryhasbeen developedprimarilytodealwithpartial(and ordinary) di?erential equations in general situations. Functional analysis in, say, Hilbert spaces has powerful tools to establish operators with good m- ping properties and invertibility properties. A combination of the two allows showing solvability of suitable concrete partial di?erential equations (PDE). When partial di?erential operators are realized as operators in L (?) for 2 n anopensubset?ofR ,theycomeoutasunboundedoperators.Basiccourses infunctionalanalysisareoftenlimitedtothestudyofboundedoperators,but we here meet the necessityof treating suitable types ofunbounded operators; primarily those that are densely de?ned and closed. Moreover, the emphasis in functional analysis is often placed on selfadjoint or normal operators, for which beautiful results can be obtained by means of spectral theory, but the cases of interest in PDE include many nonselfadjoint operators, where diagonalizationbyspectraltheoryisnotveryuseful.Weincludeinthisbooka chapter on unbounded operatorsin Hilbert space (Chapter 12),where classes of convenient operators are set up, in particular the variational operators, including selfadjoint semibounded cases (e.g., the Friedrichs extension of a symmetric operator), but with a much wider scope. Whereas the functional analysis de?nition of the operators is relatively clean and simple, the interpretation to PDE is more messy and complicated.

Anbieter: buecher.de

Stand: 26.06.2019 Zum Angebot

Stand: 26.06.2019 Zum Angebot